Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Nutr Diabetes ; 14(1): 17, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600065

RESUMO

BACKGROUND/OBJECTIVES: We investigated whether dietary interventions, i.e. a fasting mimicking diet (FMD, Prolon®) or glycocalyx mimetic supplementation (EndocalyxTM) could stabilize microvascular function in Surinamese South-Asian patients with type 2 diabetes (SA-T2DM) in the Netherlands, a patient population more prone to develop vascular complications. SUBJECTS/METHODS: A randomized, placebo controlled, 3-arm intervention study was conducted in 56 SA-T2DM patients between 18 and 75 years old, for 3 consecutive months, with one additional follow up measurement 3 months after the last intervention. Sublingual microcirculation was assessed with SDF-imaging coupled to the GlycoCheckTM software, detecting red blood cell velocity, capillary density, static and dynamic perfused boundary region (PBR), and the overall microvascular health score (MVHS). Linear mixed models and interaction analysis were used to investigate the effects the interventions had on microvascular function. RESULTS: Despite a temporal improvement in BMI and HbA1c after FMD the major treatment effect on microvascular health was worsening for RBC-velocity independent PBRdynamic, especially at follow-up. Glycocalyx supplementation, however, reduced urinary MCP-1 presence and improved both PBRdynamic and MVHSdynamic, which persisted at follow-up. CONCLUSIONS: We showed that despite temporal beneficial changes in BMI and HbA1c after FMD, this intervention is not able to preserve microvascular endothelial health in Dutch South-Asian patients with T2DM. In contrast, glycocalyx mimetics preserves the microvascular endothelial health and reduces the inflammatory cytokine MCP-1. CLINICAL STUDY REGISTRATION: NCT03889236.


Assuntos
População do Caribe , Diabetes Mellitus Tipo 2 , População da América do Sul , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Hemoglobinas Glicadas , Países Baixos , Dieta
2.
Am J Physiol Renal Physiol ; 326(5): F681-F693, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205540

RESUMO

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Jejum , Glicocálix , Glomérulos Renais , Estresse Oxidativo , Animais , Glicocálix/metabolismo , Glicocálix/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Glicemia/metabolismo , Albuminúria/metabolismo , Camundongos , Glucuronidase/metabolismo , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Dieta
3.
Cell Rep ; 42(12): 113458, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37995184

RESUMO

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.


Assuntos
Ceramidase Ácida , Imunidade Treinada , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Histonas , Lisina , Esfingolipídeos/genética , Imunidade Inata
4.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003608

RESUMO

Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.


Assuntos
Nefropatias , Podócitos , Humanos , Canal de Cátion TRPC6/genética , Canais de Cátion TRPC/genética , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Glomérulos Renais/patologia , Podócitos/patologia
5.
J Am Soc Nephrol ; 34(11): 1823-1842, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678257

RESUMO

SIGNIFICANCE STATEMENT: Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND: Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS: This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS: Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS: Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Podócitos , Humanos , Camundongos , Animais , Canal de Cátion TRPC6/fisiologia , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Calpaína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Modelos Animais de Doenças , Autofagia
6.
Front Mol Biosci ; 10: 1223972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475889

RESUMO

Background: The glomerular endothelial glycocalyx is degraded during inflammation. The glycocalyx plays a pivotal role in endothelial function and is involved in many processes including binding of chemokines and cytokines, leukocyte trafficking, and preventing proteinuria. HS-based therapeutics are a promising novel class of anti-inflammatory drugs to restore a compromised endothelial glycocalyx under inflammatory conditions. Recently, we demonstrated that treatment with HS extracted from unstimulated glomerular endothelial glycocalyx (unstimulated HSglx) reduced albuminuria during anti-GBM induced glomerulonephritis. Since endothelial HS domains are distinct in unstimulated versus inflammatory conditions, we hypothesized that 1) unstimulated HSglx, 2) LPS-stimulated HSglx, 3) the HS-mimetic fucoidan and 4) the glycosaminoglycan preparation sulodexide, which is a mixture of low molecular weight heparin and dermatan sulfate, might have different beneficial effects in experimental glomerulonephritis. Methods: The effect of unstimulated HSglx, LPS HSglx, Laminaria japonica fucoidan, or sulodexide on experimental glomerulonephritis was tested in LPS-induced glomerulonephritis in mice. Analyses included urinary albumin creatinine measurement, cytokine expression in plasma and renal cortex, and renal influx of immune cells determined by flow cytometry and immunofluorescence staining. Furthermore, the observed in vivo effects were evaluated in cultured glomerular endothelial cells and peripheral blood mononuclear cells by measuring cytokine and ICAM-1 expression levels. The ability of the compounds to inhibit heparanase activity was assessed in a heparanase activity assay. Results: Treatment of mice with LPS HSglx or sulodexide near-significantly attenuated LPS-induced proteinuria. All treatments reduced plasma MCP-1 levels, whereas only fucoidan reduced IL-6 and IL-10 plasma levels. Moreover, all treatments reversed cortical ICAM-1 mRNA expression and both fucoidan and sulodexide reversed cortical IL-6 and nephrin mRNA expression. Sulodexide decreased renal influx of CD45+ immune cells whereas renal influx of macrophages and granulocytes remained unaltered for all treatments. Although all compounds inhibited HPSE activity, fucoidan and sulodexide were the most potent inhibitors. Notably, fucoidan and sulodexide decreased LPS-induced mRNA expression of ICAM-1 and IL-6 by cultured glomerular endothelial cells. Conclusion: Our data show a potentially protective effect of glycosaminoglycans and fucoidan in experimental glomerulonephritis. Future research should be aimed at the further identification of defined HS structures that have therapeutic potential in the treatment of glomerular diseases.

7.
Front Mol Biosci ; 10: 1177560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325479

RESUMO

Proliferative forms of glomerulonephritis are characterized by the influx of leukocytes, albuminuria, and loss of kidney function. The glomerular endothelial glycocalyx is a thick carbohydrate layer that covers the endothelium and is comprised of heparan sulfate (HS), which plays a pivotal role in glomerular inflammation by facilitating endothelial-leukocyte trafficking. We hypothesize that the exogenous glomerular glycocalyx may reduce the glomerular influx of inflammatory cells during glomerulonephritis. Indeed, administration of mouse glomerular endothelial cell (mGEnC)-derived glycocalyx constituents, or the low-molecular-weight heparin enoxaparin, reduced proteinuria in mice with experimental glomerulonephritis. Glomerular influx of granulocytes and macrophages, as well as glomerular fibrin deposition, was reduced by the administration of mGEnC-derived glycocalyx constituents, thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass spectrometry analysis of this specific fraction revealed six HS oligosaccharides, ranging from tetra- to hexasaccharides with 2-7 sulfates. In summary, we demonstrate that exogenous HSglx reduces albuminuria during glomerulonephritis, which is possibly mediated via multiple mechanisms. Our results justify the further development of structurally defined HS-based therapeutics for patients with (acute) inflammatory glomerular diseases, which may be applicable to non-renal inflammatory diseases as well.

8.
Front Pharmacol ; 14: 1098184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180718

RESUMO

Introduction: The endothelial glycocalyx degrading enzyme heparanase-1 (HPSE1) is a major contributor to kidney diseases, such as glomerulonephritis and diabetic nephropathy. Therefore, inhibition of HPSE1 could be an interesting therapeutic strategy to treat glomerular diseases. A possible HPSE1 inhibitor is heparanase-2 (HPSE2) because HPSE2 is a structural homolog of HPSE1 without enzymatic activity. The importance of HPSE2 has been recently demonstrated in HPSE2-deficient mice, since these mice developed albuminuria and died within a few months after birth. We postulate that inhibition of HPSE1 activity by HPSE2 is a promising therapeutic strategy to target albuminuria and resulting renal failure. Methods: First, we evaluated the regulation of HPSE2 expression in anti-GBM and LPS-induced glomerulonephritis, streptozotocin-induced diabetic nephropathy, and adriamycin nephropathy by qPCR and ELISA. Second, we measured the HPSE1 inhibiting capacity of HPSE2 protein and 30 different HPSE2 peptides and assessed their therapeutic potential in both experimental glomerulonephritis and diabetic nephropathy using kidney function and cortical mRNA expression of HPSE1 and cytokines as outcome parameters. Results: HPSE2 expression was downregulated under inflammatory and diabetic conditions, whereas this effect on HPSE2 expression was absent with HPSE1 inhibition and in HPSE1-deficient mice. Both HPSE2 protein and a mixture of the three most potent HPSE1 inhibitory HPSE2 peptides could prevent LPS and streptozotocin induced kidney injury. Discussion: Taken together, our data suggest a protective effect of HPSE2 in (experimental) glomerular diseases and support the therapeutic potential of HPSE2 as HPSE1 inhibitor in glomerular diseases.

9.
Sci Rep ; 13(1): 6261, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069341

RESUMO

Diabetes is a main risk factor for kidney disease, causing diabetic nephropathy in close to half of all patients with diabetes. Metabolism has recently been identified to be decisive in cell fate decisions and repair. Here we used mass spectrometry imaging (MSI) to identify tissue specific metabolic dysregulation, in order to better understand early diabetes-induced metabolic changes of renal cell types. In our experimental diabetes mouse model, early glomerular glycocalyx barrier loss and systemic metabolic changes were observed. In addition, MSI targeted at small molecule metabolites and glycero(phospho)lipids exposed distinct changes upon diabetes in downstream nephron segments. Interestingly, the outer stripe of the outer medullar proximal tubular segment (PT_S3) demonstrated the most distinct response compared to other segments. Furthermore, phosphatidylinositol lipid metabolism was altered specifically in PT_S3, with one of the phosphatidylinositol fatty acid tails being exchanged from longer unsaturated fatty acids to shorter, more saturated fatty acids. In acute kidney injury, the PT_S3 segment and its metabolism are already recognized as important factors in kidney repair processes. The current study exposes early diabetes-induced changes in membrane lipid composition in this PT_S3 segment as a hitherto unrecognized culprit in the early renal response to diabetes.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais/metabolismo , Nefropatias Diabéticas/metabolismo , Metabolismo dos Lipídeos , Diabetes Mellitus/metabolismo
10.
Biosensors (Basel) ; 13(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979551

RESUMO

Crosstalk between glomerular endothelial cells and glomerular epithelial cells (podocytes) is increasingly becoming apparent as a crucial mechanism to maintain the integrity of the glomerular filtration barrier. However, in vitro studies directly investigating the effect of this crosstalk on the glomerular filtration barrier are scarce because of the lack of suitable experimental models. Therefore, we developed a custom-made glomerulus-on-a-chip model recapitulating the glomerular filtration barrier, in which we investigated the effects of co-culture of glomerular endothelial cells and podocytes on filtration barrier function and the phenotype of these respective cell types. The custom-made glomerulus-on-a-chip model was designed using soft lithography. The chip consisted of two parallel microfluidic channels separated by a semi-permeable polycarbonate membrane. The glycocalyx was visualized by wheat germ agglutinin staining and the barrier integrity of the glomerulus-on-a-chip model was determined by measuring the transport rate of fluorescently labelled dextran from the top to the bottom channel. The effect of crosstalk on the transcriptome of glomerular endothelial cells and podocytes was investigated via RNA-sequencing. Glomerular endothelial cells and podocytes were successfully cultured on opposite sides of the membrane in our glomerulus-on-a-chip model using a polydopamine and collagen A double coating. Barrier integrity of the chip model was significantly improved when glomerular endothelial cells were co-cultured with podocytes compared to monocultures of either glomerular endothelial cells or podocytes. Co-culture enlarged the surface area of podocyte foot processes and increased the thickness of the glycocalyx. RNA-sequencing analysis revealed the regulation of cellular pathways involved in cellular differentiation and cellular adhesion as a result of the interaction between glomerular endothelial cells and podocytes. We present a novel custom-made glomerulus-on-a-chip co-culture model and demonstrated for the first time using a glomerulus-on-a-chip model that co-culture affects the morphology and transcriptional phenotype of glomerular endothelial cells and podocytes. Moreover, we showed that co-culture improves barrier function as a relevant functional readout for clinical translation. This model can be used in future studies to investigate specific glomerular paracrine pathways and unravel the role of glomerular crosstalk in glomerular (patho) physiology.


Assuntos
Podócitos , Podócitos/metabolismo , Células Endoteliais/metabolismo , Técnicas de Cocultura , Dispositivos Lab-On-A-Chip , RNA
11.
EBioMedicine ; 90: 104506, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889064

RESUMO

BACKGROUND: Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor É£ (PPARÉ£) agonists can ameliorate proteinuria. Since a recent study showed that PPARÉ£ regulates HPSE expression in liver cancer cells, we hypothesized that PPARÉ£ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression. METHODS: Regulation of HPSE by PPARÉ£ was assessed in the adriamycin nephropathy rat model, and cultured glomerular endothelial cells and podocytes. Analyses included immunofluorescence staining, real-time PCR, heparanase activity assay and transendothelial albumin passage assay. Direct binding of PPARÉ£ to the HPSE promoter was evaluated by the luciferase reporter assay and chromatin immunoprecipitation assay. Furthermore, HPSE activity was assessed in 38 type 2 diabetes mellitus (T2DM) patients before and after 16/24 weeks treatment with the PPARÉ£ agonist pioglitazone. FINDINGS: Adriamycin-exposed rats developed proteinuria, an increased cortical HPSE and decreased heparan sulfate (HS) expression, which was ameliorated by treatment with pioglitazone. In line, the PPARÉ£ antagonist GW9662 increased cortical HPSE and decreased HS expression, accompanied with proteinuria in healthy rats, as previously shown. In vitro, GW9662 induced HPSE expression in both endothelial cells and podocytes, and increased transendothelial albumin passage in a HPSE-dependent manner. Pioglitazone normalized HPSE expression in adriamycin-injured human endothelial cells and mouse podocytes, and adriamycin-induced transendothelial albumin passage was reduced as well. Importantly, we demonstrated a regulatory effect of PPARÉ£ on HPSE promoter activity and direct PPARy binding to the HPSE promoter region. Plasma HPSE activity of T2DM patients treated with pioglitazone for 16/24 weeks was related to their hemoglobin A1c and showed a moderate, near significant correlation with plasma creatinine levels. INTERPRETATION: PPARÉ£-mediated regulation of HPSE expression appears an additional mechanism explaining the anti-proteinuric and renoprotective effects of thiazolidinediones in clinical practice. FUNDING: This study was financially supported by the Dutch Kidney Foundation, by grants 15OI36, 13OKS023 and 15OP13. Consortium grant LSHM16058-SGF (GLYCOTREAT; a collaboration project financed by the PPP allowance made available by Top Sector Life Sciences & Health to the Dutch Kidney Foundation to stimulate public-private partnerships).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias , Tiazolidinedionas , Ratos , Camundongos , Humanos , Animais , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , PPAR gama , Diabetes Mellitus Tipo 2/complicações , Agonistas PPAR-gama , Células Endoteliais/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Proteinúria/tratamento farmacológico , Proteinúria/etiologia , Nefropatias/tratamento farmacológico , Doxorrubicina/efeitos adversos
12.
J Pathol ; 259(2): 149-162, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373978

RESUMO

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Humanos , Túbulos Renais Proximais/patologia , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais , Glicólise
13.
PLoS One ; 17(9): e0274959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137166

RESUMO

Recurrence of proteinuria after kidney transplantation in primary focal segmental glomerulosclerosis (FSGS) is unpredictable. Several putative circulating permeability factors (CPFs) have been suggested, but none have been validated. A clinically relevant experimental model is required that demonstrates the presence of CPF(s) in patient material, to study CPF(s) and possibly predict recurrence in patients. We aimed to develop a FSGS-prone Thy-1.1 transgenic mouse model with accelerated proteinuria after injection of samples from patients with FSGS. The Thy-1.1 transgene was backcrossed into 5 mouse strains. The age of onset and severity of spontaneous proteinuria varied between the different genetic backgrounds. 129X1/SvThy-1.1 and 129S2/SvPasThy-1.1 mice displayed proteinuria at 4 weeks, whereas Balb/cThy-1.1 and C57BL/6JThy-1.1 mice developed proteinuria from 6 weeks, and were used further. We determined the maximum protein dose that could be injected without causing protein overload in each background. Balb/cThy-1.1 and C57BL/6JThy-1.1 males and females were injected with presumably CPF-containing plasmapheresis effluent from 6 FSGS patients, which induced albuminuria particularly in Balb/cThy-1.1 males. Unfortunately, no response could be detected when using sera instead of plasmapheresis effluent, serum being more clinically relevant in the context of predicting FSGS recurrence. Considering the differences between responses elicited by serum and plasmapheresis effluent, simultaneously collected serum, plasma, and plasmapheresis effluent were tested. Whereas we could detect responses using a validated in vitro model, none of these presumably CPF-containing samples induced proteinuria in Balb/cThy-1.1 males. Thus, we have extensively tested the Thy-1.1 mouse model on different genetic backgrounds with proteinuria after injection of FSGS patient material as clinically relevant readout. The Balb/cThy-1.1 male mouse strain demonstrated the most promising results, but to detect CPF activity in FSGS serum e.g. prior to kidney transplantation, this strain clearly lacks sensitivity and is therefore not yet clinically applicable. It could, however, still be used as research tool to study CPFs in patient samples that did induce proteinuria.


Assuntos
Glomerulosclerose Segmentar e Focal , Animais , Feminino , Glomerulosclerose Segmentar e Focal/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade , Plasmaferese , Proteinúria/etiologia , Recidiva
14.
Front Immunol ; 13: 916512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757776

RESUMO

Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury (thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular endothelium. The aim of this translational study was to investigate the role of the eGC-degrading enzyme heparanase (HPSE), which is known to play a central role in the destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-19 patients correlated with several markers of eGC damage and perfused boundary region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25 µm). In a series of translational experiments, we demonstrate that the changes in eGC thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19 serum, as shown by atomic force microscopy and immunofluorescence imaging. Our results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-protective off-target effect.


Assuntos
COVID-19 , Glucuronidase , Glicocálix , COVID-19/metabolismo , COVID-19/patologia , Glucuronidase/metabolismo , Glicocálix/metabolismo , Glicocálix/patologia , Heparina/farmacologia , Humanos
15.
Kidney Int Rep ; 7(4): 675-677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35497782
16.
Front Immunol ; 13: 822995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514984

RESUMO

Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.


Assuntos
Doenças Autoimunes , Micropartículas Derivadas de Células , Ácidos Nucleicos , Doenças Autoimunes/metabolismo , Autoimunidade , Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Humanos , Ácidos Nucleicos/metabolismo
17.
Front Cell Dev Biol ; 10: 765887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372336

RESUMO

It is well established that mammalian kidney epithelial cells contain a single non-motile primary cilium (9 + 0 pattern). However, we noted the presence of multiple motile cilia with a central microtubular pair (9 + 2 pattern) in kidney biopsies of 11 patients with various kidney diseases, using transmission electron microscopy. Immunofluorescence staining revealed the expression of the motile cilia-specific markers Radial Spoke Head Protein 4 homolog A, Forkhead-box-protein J1 and Regulatory factor X3. Multiciliated cells were exclusively observed in proximal tubuli and a relative frequent observation in human kidney tissue: in 16.7% of biopsies with tubular injury and atrophy (3 of 18 tissues), in 17.6% of biopsies from patients with membranous nephropathy (3 of 17 tissues) and in 10% of the human kidney tissues derived from the unaffected pole after tumour nephrectomy (3 of 30 tissues). However, these particular tissues showed marked tubular injury and fibrosis. Further analysis showed a significant relation between the presence of multiciliated cells and an increased expression of alpha-smooth-muscle-actin (p-value < 0.01) and presence of Kidney-injury-molecule-1 (p-value < 0.01). Interestingly, multiciliated cells co-showed staining for the scattered tubular cell markers annexin A2, annexin A3, vimentin and phosphofructokinase platelet but not with cell senescence associated markers, like (p16) and degradation of lamin B. In conclusion, multiciliated proximal tubular cells with motile cilia were frequently observed in kidney biopsies and associated with tubular injury and interstitial fibrosis. These data suggest that proximal tubular cells are able to transdifferentiate into multiciliated cells.

18.
Development ; 149(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35417019

RESUMO

Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies.


Assuntos
Síndrome Nefrótica , Células-Tronco Pluripotentes , Podócitos , Feminino , Humanos , Rim/metabolismo , Masculino , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Organoides , Células-Tronco Pluripotentes/metabolismo , Podócitos/metabolismo , Podócitos/patologia
19.
Sci Rep ; 12(1): 1199, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075227

RESUMO

Kidney iron deposition may play a role in the progression of tubulointerstitial injury during chronic kidney disease. Here, we studied the molecular mechanisms of kidney iron loading in experimental focal segmental glomerulosclerosis (FSGS) and investigated the effect of iron-reducing interventions on disease progression. Thy-1.1 mice were injected with anti-Thy-1.1 monoclonal antibody (mAb) to induce proteinuria. Urine, blood and tissue were collected at day (D)1, D5, D8, D15 and D22 after mAb injection. Thy-1.1 mice were subjected to captopril (CA), iron-deficient (ID) diet or iron chelation (deferoxamine; DFO). MAb injection resulted in significant albuminuria at all time points (p < 0.01). Kidney iron loading, predominantly in distal tubules, increased in time, along with urinary kidney injury molecule-1 and 24p3 concentration, as well as kidney mRNA expression of Interleukin-6 (Il-6) and Heme oxygenase-1 (Ho-1). Treatment with CA, ID diet or DFO significantly reduced kidney iron deposition at D8 and D22 (p < 0.001) and fibrosis at D22 (p < 0.05), but not kidney Il-6. ID treatment increased kidney Ho-1 (p < 0.001). In conclusion, kidney iron accumulation coincides with progression of tubulointerstitial injury in this model of FSGS. Reduction of iron loading halts disease progression. However, targeted approaches to prevent excessive kidney iron loading are warranted to maintain the delicate systemic and cellular iron balance.


Assuntos
Glomerulosclerose Segmentar e Focal/metabolismo , Ferro/metabolismo , Túbulos Renais Distais/metabolismo , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Captopril/uso terapêutico , Desferroxamina/uso terapêutico , Modelos Animais de Doenças , Feminino , Glomerulosclerose Segmentar e Focal/dietoterapia , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Masculino , Camundongos , Receptores de Superfície Celular/metabolismo , Sideróforos/uso terapêutico
20.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613637

RESUMO

Many patients with primary focal segmental glomerulosclerosis (FSGS) develop recurrence of proteinuria after kidney transplantation. Several circulating permeability factors (CPFs) responsible for recurrence have been suggested, but were never validated. We aimed to find proteins involved in the mechanism of action of CPF(s) and/or potential biomarkers for the presence of CPF(s). Cultured human podocytes were exposed to plasma from patients with FSGS with presumed CPF(s) or healthy and disease controls. Podocyte proteomes were analyzed by LC-MS. Results were validated using flow cytometry, RT-PCR, and immunofluorescence. Podocyte granularity was examined using flow cytometry, electron microscopy imaging, and BODIPY staining. Perilipin-2 protein expression was increased in podocytes exposed to presumed CPF-containing plasmas, and correlated with the capacity of plasma to induce podocyte granularity, identified as lipid droplet accumulation. Elevated podocyte perilipin-2 was confirmed at protein and mRNA level and was also detected in glomeruli of FSGS patients whose active disease plasmas induced podocyte perilipin-2 and lipid droplets. Our study demonstrates that presumably, CPF-containing plasmas from FSGS patients induce podocyte lipid droplet accumulation and perilipin-2 expression, identifying perilipin-2 as a potential biomarker. Future research should address the mechanism underlying CPF-induced alterations in podocyte lipid metabolism, which ultimately may result in novel leads for treatment.


Assuntos
Glomerulosclerose Segmentar e Focal , Podócitos , Humanos , Podócitos/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Gotículas Lipídicas/metabolismo , Glomérulos Renais/metabolismo , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...